Lynx DLL interface specifications –

The Lynx DLL provides application developers with the functionality necessary for serial communications using the HarvestMaster/Juniper Systems ProLink protocol. The ProLink protocol is used for data transfer and file management on the HarvestMaster/Juniper Systems handheld platforms, including the Pro4000 and Allegro (DOS). Lynx will not work with older platforms (e.g. Pro2000). In order to establish a connection to a handheld using Lynx, the desktop and the handheld must be physically connected via a null modem cable and the handheld must be running the FileScout or ProShell interface.

There are 11 functions and 2 procedures contained in the Lynx DLL. The functions will return one of the following values:

 RM_SUCCESS = 1;

 RM_FAILURE = 2;

 RM_CONNECTION_FAILED = 3;

 RM_OPEN_PORT_FAILED = 4;

 RM_CANCELLED = 5;

The return values that can be expected from each function are specified below. No value is returned from the procedure calls. Most of the functions are capable of returning the value RM_CONNECTION_FAILED. This value indicates that a timeout has occurred at some point in the Lynx protocol and the link is no longer valid. Upon receiving RM_CONNECTION_FAILED, the application should call the DisconnectRemote procedure and attempt to reconnect before initiating any further transactions. If a file transfer was in progress, no assumptions should be made regarding whether or not the file transfer was successful.

The type “PChar” specified below is a pointer to a null terminated character string. This type is used for passing string parameters rather than the far superior Pascal AnsiString type in order to provide compatibility with C code.

Each function in the interface is discussed in detail below.

function ConnectToRemote(PCPortStr :PChar): word; StdCall;

ConnectToRemote must be called before any other Lynx functions or procedures. This function takes a single character pointer parameter that specifies a serial port on the desktop PC, for example ‘COM1’. ConnectToRemote opens this port and establishes communication with the handheld. The function will return RM_SUCCESS, RM_OPEN_PORT_FAILED, or RM_CONNECTION_FAILED. The connection process normally takes several seconds to complete.

function ChangeRemoteDirectory(PCRemotePathName :PChar): word; StdCall;

ChangeRemoteDirectory sets the default directory on the handheld. The function takes a single character pointer parameter that specifies the default directory, for example ‘C:\DOS’. The string should specify a full path name. The function will return RM_SUCCESS, RM_FAILURE, or RM_CONNECTION_FAILED. A return value of RM_FAILURE probably indicates that the specified directory does not exist on the handheld. This is an important function in the protocol because most file management functions take a file name parameter only, without a path specification. In other words, you must set the default directory on the handheld before sending a file, receiving a file, or deleting a file.
function GetRemoteDirectory(PCRemotePathName :PChar; CallbackProc :TFarProc): word; StdCall;

GetRemoteDirectory retrieves an entire listing of files and folders in the specified directory. The function takes 2 parameters. The first is a character pointer that specifies the path name of the directory to be retrieved and should include a file name and/or wildcard characters. For example, ‘C:\DOS*.*’ will retrieve a directory listing of C:\DOS. The second parameter is a far pointer to a callback function defined as follows:

TDirectoryCallback = procedure(Name :string14; Attr, Time, Size :integer); StdCall;

where “string14” is a short Pascal string 14 characters long, “Attr” specifies the file attributes, “Time” is a DOS date-and-time value, and “Size” specifies the file size in bytes. This function will be called once for each listing in the specified directory. The end of the directory will be indicated when the callback function returns with a null string for “Name”, and zeros in “Attr”, “Time”, and “Size”. GetRemoteDirectory will return either RM_SUCCESS or RM_CONNECTION_FAILED.

function DeleteRemoteFile(PCRemoteFileName :PChar): word; StdCall;

DeleteRemoteFile take a single character pointer parameter that specifies a file to be deleted on the handheld. As noted above, you must first use ChangeRemoteDirectory to set the default directory on the handheld to the location of the specified file. The function will return either RM_SUCCESS or RM_CONNECTION_FAILED.

function RemoteFileExists(PCRemoteFileName :PChar;

 var RemoteFileSize :integer;

 var RemoteBytesFree :integer): word; StdCall;

RemoteFileExists is used to determine if a file exists on the handheld. This function must be called immediately before ReceiveFileFromRemote in order to load a global structure used by the latter function. RemoteFileExists is also the only function that returns the number of bytes that are free on the current default drive. RemoteFileExists takes 3 parameters: (1) a character pointer specifying the file name of interest; (2) a pointer to an integer that returns the size of the file (if it exists); and (3) a pointer to an integer that returns the number of bytes free on the default drive. The function will return RM_SUCCESS if the file exists, RM_FAILURE if the file does not exist, or RM_CONNECTION_FAILED if the transaction does not complete. As noted above, you must first use ChangeRemoteDirectory to set the default directory on the handheld to the location of the specified file.

function SendFileToRemote(PCLocalFileName :PChar): word; StdCall;

SendFileToRemote takes a single character pointer parameter that specifies a complete path name on the local computer. The file is transferred to the current default directory on the handheld. The function will return RM_SUCCESS if the transfer is successful, RM_FAILURE if the specified file does not exist, RM_CONNECTION_FAILED if the link fails, or RM_CANCELLED if the transfer is cancelled.

function ReceiveFileFromRemote(PCLocalFilePath :PChar): word; StdCall;

ReceiveFileFromRemote takes a single character pointer parameter that specifies the path on the local machine in which to place the received file. As noted above, RemoteFileExists must be called before this function in order to load a global structure pertaining to the file of interest. ReceiveFileFromRemote then retrieves the file specified in the file name parameter of RemoteFileExists. ReceiveFileFromRemote will return RM_SUCCESS if the file is received correctly, RM_FAILURE if the file cannot be opened on the local machine, RM_CONNECTION_FAILED if the connection is lost, or RM_CANCELLED if the file transfer is cancelled.

function CopyRemoteFile(PCSourcePathName, PCDestPathName :PChar): word; StdCall;

CopyRemoteFile takes 2 character pointer parameters. The first is the complete path name of a file to be copied. The second is a complete path (file name is optional) that specifies a destination. The default directory does not have to be set before calling this function. CopyRemoteFile will return RM_SUCCESS, RM_FAILURE, or RM_CONNECTION_FAILED.

function RenameRemoteFile(PCOldFileName, PCNewFileName :PChar): word; StdCall;

RenameRemoteFile takes 2 character pointer parameters. The first is the name of a file to be renamed. The second is the new file name. The file to be renamed must reside in the current default directory (use ChangeRemoteDirectory to set the default directory). RenameRemoteFile will return RM_SUCCESS, RM_FAILURE, or RM_CONNECTION_FAILED.

function CreateRemoteDirectory(PCNewFolderPath :PChar): word; StdCall;

CreateRemoteDirectory takes a single character pointer parameter that specifies the full path name of a directory to be created. The default directory does not have to be set before calling this function. CreateRemoteDirectory will return RM_SUCCESS, RM_FAILURE, or RM_CONNECTION_FAILED.

function RemoveRemoteDirectory(PCDeleteFolderPath :PChar): word; StdCall;

RemoveRemoteDirectory takes a single character pointer parameter that specifies the full path name of a directory to be deleted. The specified directory must be empty. The default directory does not have to be set before calling this function. RemoveRemoteDirectory will return RM_SUCCESS, RM_FAILURE, or RM_CONNECTION_FAILED.

procedure CancelFileTransfer; StdCall;

CancelFileTransfer takes no parameters and returns no value. Call this function to terminate a file transfer that is in progress.

procedure DisconnectRemote; StdCall;

DisconnectRemote takes no parameters and returns no value. Call this function to terminate a valid connection with the handheld.

The following is an example of a Pascal interface to the Lynx DLL. An application must include this interface (or a functionally similar one) in order to make calls to the Lynx DLL. Code written in C will require a functionally equivalent interface.

unit LynxInterface;

interface

uses Windows;

const

 RM_SUCCESS = 1;

 RM_FAILURE = 2;

 RM_CONNECTION_FAILED = 3;

 RM_OPEN_PORT_FAILED = 4;

 RM_CANCELLED = 5;

type

 string14 = string[14];

 TDirectoryCallback = procedure(Name :string14;

 Attr,

 Time,

 Size :integer); StdCall;

function ConnectToRemote(PCPortStr :PChar): word; StdCall;

function ChangeRemoteDirectory(PCRemotePathName :PChar): word; StdCall;

function GetRemoteDirectory(PCRemotePathName :PChar;

 CallbackProc :TFarProc): word; StdCall;

function DeleteRemoteFile(PCRemoteFileName :PChar): word; StdCall;

function RemoteFileExists(PCRemoteFileName :PChar;

 var RemoteFileSize :integer;

 var RemoteBytesFree :integer): word; StdCall;

function SendFileToRemote(PCLocalFileName :PChar): word; StdCall;

function ReceiveFileFromRemote(PCLocalFilePath :PChar): word; StdCall;

function CopyRemoteFile(PCSourcePathName, PCDestPathName :PChar): word; StdCall;

function RenameRemoteFile(PCOldFileName, PCNewFileName :PChar): word; StdCall;

function CreateRemoteDirectory(PCNewFolderPath :PChar): word; StdCall;

function RemoveRemoteDirectory(PCDeleteFolderPath :PChar): word; StdCall;

procedure CancelFileTransfer; StdCall;

procedure DisconnectRemote; StdCall;

implementation

function ConnectToRemote; external 'LynxDLL.DLL' name 'ConnectToRemote';

function ChangeRemoteDirectory; external 'LynxDLL.DLL' name 'ChangeRemoteDirectory';

function GetRemoteDirectory; external 'LynxDLL.DLL' name 'GetRemoteDirectory';

function DeleteRemoteFile; external 'LynxDLL.DLL' name 'DeleteRemoteFile';

function RemoteFileExists; external 'LynxDLL.DLL' name 'RemoteFileExists';

function SendFileToRemote; external 'LynxDLL.DLL' name 'SendFileToRemote';

function ReceiveFileFromRemote; external 'LynxDLL.DLL' name 'ReceiveFileFromRemote';

function CopyRemoteFile; external 'LynxDLL.DLL' name 'CopyRemoteFile';

function RenameRemoteFile; external 'LynxDLL.DLL' name 'RenameRemoteFile';

function CreateRemoteDirectory; external 'LynxDLL.DLL' name 'CreateRemoteDirectory';

function RemoveRemoteDirectory; external 'LynxDLL.DLL' name 'RemoveRemoteDirectory';

procedure CancelFileTransfer; external 'LynxDLL.DLL' name 'CancelFileTranfer';

procedure DisconnectRemote; external 'LynxDLL.DLL' name 'DisconnectRemote';

end.

HarvestMaster/Juniper Systems
20 November, 2000
1 of 5
LynxDLL-12733-00.DOC

